Smooth Homogeneous Structures in Operator Theory

Daniel Beltita author

Format:Paperback

Publisher:Taylor & Francis Ltd

Published:23rd Oct '19

Currently unavailable, and unfortunately no date known when it will be back

This paperback is available in another edition too:

Smooth Homogeneous Structures in Operator Theory cover

Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loop groups. The author provides complete arguments for nearly every result. An extensive list of references and bibliographic notes provide a clear picture of the applicability of geometric methods in functional analysis, and the open questions presented throughout the text highlight interesting new research opportunities. Daniel Beltitâ is a Principal Researcher at the Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest, Romania.

ISBN: 9780367391898

Dimensions: unknown

Weight: 590g

318 pages