Machine Learning Applications in Subsurface Energy Resource Management
State of the Art and Future Prognosis
Format:Hardback
Publisher:Taylor & Francis Ltd
Published:27th Dec '22
Currently unavailable, and unfortunately no date known when it will be back

The utilization of machine learning (ML) techniques to understand hidden patterns and build data-driven predictive models from complex multivariate datasets is rapidly increasing in many applied science and engineering disciplines, including geo-energy. Motivated by these developments, Machine Learning Applications in Subsurface Energy Resource Management presents a current snapshot of the state of the art and future outlook for ML applications to manage subsurface energy resources (e.g., oil and gas, geologic carbon sequestration, and geothermal energy).
- Covers ML applications across multiple application domains (reservoir characterization, drilling, production, reservoir modeling, and predictive maintenance)
- Offers a variety of perspectives from authors representing operating companies, universities, and research organizations
- Provides an array of case studies illustrating the latest applications of several ML techniques
- Includes a literature review and future outlook for each application domain
This book is targeted at practicing petroleum engineers or geoscientists interested in developing a broad understanding of ML applications across several subsurface domains. It is also aimed as a supplementary reading for graduate-level courses and will also appeal to professionals and researchers working with hydrogeology and nuclear waste disposal.
ISBN: 9781032074528
Dimensions: unknown
Weight: 860g
360 pages