Statistical Modeling and Inference for Social Science
Format:Paperback
Publisher:Cambridge University Press
Published:6th Apr '17
Currently unavailable, and unfortunately no date known when it will be back

This textbook is an introduction to probability theory, statistical inference and statistical modeling for graduate students and practitioners beginning social science research.
Written specifically for graduate students and practitioners beginning social science research, this textbook introduces the essential statistical tools, models and theories that make up the social scientist's toolkit. Focusing on the connection between statistical procedures and social science theory, Sean Gailmard demonstrates how social scientists assess relationships between variables.Written specifically for graduate students and practitioners beginning social science research, Statistical Modeling and Inference for Social Science covers the essential statistical tools, models and theories that make up the social scientist's toolkit. Assuming no prior knowledge of statistics, this textbook introduces students to probability theory, statistical inference and statistical modeling, and emphasizes the connection between statistical procedures and social science theory. Sean Gailmard develops core statistical theory as a set of tools to model and assess relationships between variables - the primary aim of social scientists - and demonstrates the ways in which social scientists express and test substantive theoretical arguments in various models. Chapter exercises guide students in applying concepts to data, extending their grasp of core theoretical concepts. Students will also gain the ability to create, read and critique statistical applications in their fields of interest.
'With careful consideration for both rigor and intuition, Gailmard fills a large void in the social science literature. Those seeking clear mathematical exposition will not be disappointed. Those hoping for substantive applications to illuminate the data analysis will also be pleased. This book strikes a nearly perfect balance.' Wendy K. Tam Cho, National Center for Supercomputing Applications and University of Illinois, Urbana-Champaign
'This is the single best book on modeling in social science - it goes beyond any extant book and will without a doubt become the standard text in methods courses throughout the social sciences.' James N. Druckman, Payson S. Wild Professor of Political Science, Northwestern University, Illinois
'In Statistical Modeling and Inference for Social Science, Gailmard provides a complete and well-written review of statistical modeling from the modern perspective of causal inference. It provides all the material necessary for an introduction to quantitative methods for social science students.' Jonathan N. Katz, Kay Sugahara Professor of Social Sciences and Statistics, and Chair, Division of the Humanities and Social Sciences, California Institute of Technology
ISBN: 9781316622223
Dimensions: 230mm x 150mm x 24mm
Weight: 590g
391 pages