Stochastic Linear Programming Algorithms

A Comparison Based on a Model Management System

Janos Mayer author

Format:Hardback

Publisher:Taylor & Francis Ltd

Published:25th Feb '98

Currently unavailable, and unfortunately no date known when it will be back

Stochastic Linear Programming Algorithms cover

A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.

ISBN: 9789056991449

Dimensions: unknown

Weight: 512g

163 pages