Towards User-Centric Intelligent Network Selection in 5G Heterogeneous Wireless Networks
A Reinforcement Learning Perspective
Qihui Wu author Bin Jiang author Kun Xu author Zhiyong Du author Yuhua Xu author
Format:Hardback
Publisher:Springer Verlag, Singapore
Published:18th Nov '19
Currently unavailable, and unfortunately no date known when it will be back

This book presents reinforcement learning (RL) based solutions for user-centric online network selection optimization. The main content can be divided into three parts. The first part (chapter 2 and 3) focuses on how to learning the best network when QoE is revealed beyond QoS under the framework of multi-armed bandit (MAB). The second part (chapter 4 and 5) focuses on how to meet dynamic user demand in complex and uncertain heterogeneous wireless networks under the framework of markov decision process (MDP). The third part (chapter 6 and 7) focuses on how to meet heterogeneous user demand for multiple users inlarge-scale networks under the framework of game theory. Efficient RL algorithms with practical constraints and considerations are proposed to optimize QoE for realizing intelligent online network selection for future mobile networks. This book is intended as a reference resource for researchers and designers in resource management of 5G networks and beyond.
ISBN: 9789811511196
Dimensions: unknown
Weight: 454g
136 pages
1st ed. 2020